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Abstract

NIDS-CRAM is widely used to investigate the impact of the COVID
pandemic on individuals and households. However, because NIDS-CRAM
is a survey of individuals it is difficult to make accurate statements about
households. Nevertheless many issues of interest, such as the hunger ques-
tions in NIDS-CRAM, are about the household and not just the respondent.

The problem with using the existing NIDS-CRAM weights for these anal-
yses is that there is double-counting: there are potentially many individuals
from the same household in the NIDS-CRAM survey. We show that over-
lapping membership affects between 40% to 50% of the observations.

In this paper we lay out the theory for dealing with this problem and
generate a set of “household weights” to reduce the double-counting. We
use these weights to produce some initial estimates of how prevalent hunger
might have been during the lockdown.

Paradoxically estimates of the fraction of households affected by hunger
are not changed much by using the household weights rather than the per-
son weights released with NIDS-CRAM. The reason for this is that hunger
is only very weakly associated with household size, so the double-counting
implicit in using the person weights does not skew the estimates much.
However if one wants to generate estimates of the number of households or
people affected by hunger the household weights make a much bigger differ-
ence. Indeed, we generate a first set of numbers that quantify the problem.
For instance somewhere between 1.5 million and 3.1 million children were

∗We would like to thank Tim Brophy, Reza Daniels and Kim Ingle from NIDS-CRAM for
access to the sampling frame and the sampling files and to Cally Ardington, Rulof Burger and
Andrew Kerr for access to the stratification codes.
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affected by hunger at the time of the field work for NIDS-CRAM wave 5.
These estimates have to be treated with some caution, because our weights
do not properly deal with changes in the distribution of households since
2017, in particular new household formation.

1 Introduction

NIDS-CRAM (2020a, 2020b, 2021a, 2021b, 2021c) has been one of the most widely
used sources of information about the impact of the COVID pandemic on indi-
viduals and households. Nevertheless as the panel user guide points out (Ingle,
Brophy and Daniels 2020, section 7.1, p.5), the household level information has to
be treated with caution:

individuals from larger households are more likely to be sampled
than individuals from smaller households. Researchers can therefore
not use NIDS-CRAM to conduct household-level analysis. However,
it is possible to estimate statistics at an individual level about house-
hold living conditions. It would be legitimate to state “For a broadly
representative sample of adults from 2017, who were re-interviewed in
2020, we estimate that X% of adults live in households receiving a gov-
ernment grant”. However, it is not legitimate to [state] that Y% of
households received a government grant.

The situation is schematically depicted in Figure 1. Information is collected at
two levels in a survey: individual (age and gender) as well as household (household
size and prevalence of hunger). If we analyse the household level information (e.g.
household size) over the distribution of individuals we get misleading information.
For instance, adding up household size over the individual file we would get a
“total population” of 30 (in the example of Figure 1) whereas the true count is 10.
The problem is the double-, triple- and quadruple-counting of the information in
large households.

The problem, of course, is that in NIDS-CRAM we only have a sample of indi-
viduals. So, although we have information on the households of those individuals,
standard estimators will yield estimates for the frame from which those samples
were drawn, i.e. they will provide estimates for the population of individuals1 not
the population of households. This is schematically depicted in Figure 2.

Although this problem is well understood (as indicated in the quote above),
the temptation to slide from individual level statistics to household level ones is
very strong. For instance van der Berg, Patel and Bridgman (2021, p.1) report:

1actually, only adult individuals
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Figure 1: Information in surveys is often collected at different levels – individuals
and households. This does not cause problems if the data is analysed at the
appropriate level.

Figure 2: Sampling in NIDS-CRAM is from a frame of individuals, so the household
level information cannot be connected directly back to a frame of households.
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Overall, the proportion of households who reported running out
of money for food went from 47% in Wave 1 to 38% in Wave 2 – a
significant decrease. In Wave 3, however, the proportion rose again to
41%

One could rewrite this in terms of “the number of respondents who reported that
their households ran out of money” but policy makers and the general public are
unlikely to understand the distinctions. Furthermore, what respondents report on
their households is typically not the real object of interest.

In this paper we do several things:

• We document the extent to which the NIDS-CRAM survey is subject to
“double-counting” of households.

• We present an approach for how to calculate statistics that are more infor-
mative about the household level. This weighting strategy has to be treated
with some caution, because it cannot deal with household changes that have
occurred since 2017. It is, however, more defensible than using the NIDS-
CRAM weights for this purpose.

• We sketch out what an “optimal” weighting strategy might look like and
take some steps towards implementing it.

• We show that individuals who appear to be from the same household some-
times report different information. That can be due to changes in living
arrangments. But we observe differences even when such changes do not
seem to have occurred, suggesting that researchers need to consider the pos-
sible impact of measurement error on their findings.

• Despite the potential problems of “double-counting” and mismeasurement
it turns out that the statistics reported in the literature, e.g. in the quote
from van der Berg et al. (2021) cited earlier, are not far off from the “better”
results that we calculate.

We begin our discussion, in the next section, with a quick examination of the
extent of double-counting in NIDS-CRAM. We then present the general approach
to estimating household level statistics. It is based on the straightforward idea
that the household level quantity needs to be “shared out” between its constituent
members to eliminate double counting. There are many ways of doing so. We
argue that the “optimal” rule for doing so, in an ideal world, is proportional to
the odds of an individual being selected.

However, this is not an ideal world. The first major complication is that we
do not have proper design weights. Instead, nonresponse is a centrally important
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issue. NIDS-CRAM dealt with this problem at two levels: increasing the sampling
rate in strata that were hard to reach and a non-response adjustment to the weight.
We show in section 4 how to incorporate such adjustments into the calculation of
household level statistics.

When we turn from household level variables measured on the 2017 sampling
frame (i.e. where there is no uncertainty) to household variables measured in
NIDS-CRAM itself, we also need to deal with the possibility of measurement error.
In section 7 we argue that its effect is to shift the “optimal” household sharing
rule towards sharing the household quantities proportional to the probability of
an individual being selected.

The final, and most difficult, set of complications arise from the fact that that
the household distribution has itself changed between 2017 and 2020. In section 8
we sketch out what would be required to deal with this issue. We hope to tackle
that topic in future work. In the conclusion we attempt to draw some lessons from
our empirical work.

We try to keep the technical details in the main text to a minimum. A more
technical discussion of the procedure as well as how it relates to the NIDS-CRAM
sampling scheme is given in the appendix (section A).

2 Double-counting in NIDS-CRAM

Table 1 presents the basic information on the level of potential double counting
in NIDS-CRAM. Of the 26 889 individuals on the frame (i.e. aged 15 or older
in NIDS wave 5) 20 646 were sampled in one form or another in NIDS-CRAM.
81% of these sampled individuals were co-resident in 2017 with another individ-
ual who got sampled. However we see (in panel C of Table 1) that this overlap
reduces to 53% when we consider only respondents in NIDS-CRAM wave 1. The
non-response process could either have aggravated or ameliorated the problem of
double-counting. We see that in this case it substantially reduced the problem.
Nevertheless the overlap is still substantial. Of course part of this “overlap” is
spurious – two respondents from the same 2017 household could now very well be
living in different households. Panel D of Table 1 now considers only respondents
who also indicated that they were still living in the same place where they were
interviewed in Wave 5 of NIDS. Paradoxically the overlap is reduced, but it is still
sizable.

Given the fact that double-counting of households affects a minimum of 40% of
sampled cases and probably more, it is clear that using NIDS-CRAM respondent
information to generate “household” level statistics will be dubious. We turn now
to consider how this might be done.
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Table 1: Extent of double counting: Percentage and number of NIDS-CRAM
individuals in shared NIDS wave 5 households.

NIDS-CRAM Percent from
shared NIDS w5
household

Observations

A. Frame 26889
B. Sampled All 0.809 20646

Original 0.756 17568
Top-up N.A.1 3078

C. Respondents Wave 1 0.527 7073
Wave 2 0.477 5676
Wave 3 0.511 6130
Wave 4 0.495 5629
Wave 5 0.495 5862

D. Respondents in “same” household2 Wave 1 N.A.3

Wave 2 0.419 4272
Wave 3 0.428 4035
Wave 4 0.444 4215
Wave 5 0.439 4395

Notes:
1. 27.6% of top-up respondents shared households with other top-up respondents,
but many of them also shared households with original sample members so the more
relevant statistic is the one given for “All.”
2. These are respondents who indicated that they are still living in the same 2017
dwelling unit
3. Information on whether living in same dwelling as when interviewed in NIDS
wave 5 not asked in NIDS-CRAM wave 1
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3 Estimating household level information

There is, of course, a straightforward fix for estimating household level quantities
from an individual level dataset. To get from the individual frame to the popula-
tion frame (e.g. in Figure 1) we need to keep one individual per household. We
could achieve this by marking that individual (e.g. the “Household Head” or the
oldest individual) on the frame and then estimating household quantities on the
sample only over the marked individuals. We show in section A.1 that this proce-
dure produces an unbiased estimate, provided that every household is represented
on the frame.2

Observe that

• This is not equivalent to keeping one individual per household in the re-
alised sample. There is no guarantee that the individuals in the sample
include the “Household Head” or any other individual designated ex ante as
household representative. Picking another individual based on the realised
sample would make the variable designating the household representative
stochastic. Indeed the estimator would no longer be unbiased. Households
with more members would have many more ways of contributing to the sam-
ple estimates than households with just one individual.

• It is clear from the previous point that this would be a very noisy estimate,
since there will be a lot of households that are represented in the sample
that will not contribute to the estimate, because the sampled individual is
not the “Head” or ex ante designated representative. We are throwing away
a lot of information.

One way of getting around that problem is to “share out” the household level
variable xh between all the household members that are represented on the frame.
In the case of NIDS-CRAM that would be adult individuals. In fact any set of
shares sih that add up to one for individuals on the frame from the same household
will work, as we show in section A.2. Figure 3 shows three possible rules.

The simplest rule would be to allocate the shares equally across members from
the same household on the frame. Note again that this rule needs to be applied
on the frame and not on the realised sample.

It turns out that there is an even more efficient sharing rule. We show in
section A.3 that the approximately optimal sharing rule is to allocate shares pro-
portional to the odds of selection:

sih ∝
πih

1− πih
(1)

2In the context of NIDS-CRAM this means that we assume that there are no all-children
households.
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Figure 3: Any set of shares that add up to one within households on the frame
will lead to unbiased estimates of household quantities. Picking one representative
per household (left-most box) will do so, but will lead to more noisy estimates
than creating equal shares (top box). Theoretically the most efficient sharing rule
is to do so inversely proportional to the odds of selection (bottom right: assumed
sample design – 1 male and 2 females by simple random sampling).
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The intuition is that observations that have a low probability of selection will
have a high weight. That, however, will induce greater variance in the estimates,
depending on whether or not that observation is included. By allocating it a
smaller share we are making the estimates more stable.

In the empirical results we use four household sharing rules to generate esti-
mates of household level statistics:

• A household “representative” rule, i.e. picking the oldest member on the
frame

• Equal shares within households

• Shares proportional to the odds of selection

• Shares proportional to the probability of selection

The motivation for using the last rule is sketched out in section 7 below (and in
more detail in section A.5).

4 Dealing with NIDS-CRAM sampling and Non-

response

The NIDS-CRAM sampling and weighting strategy is more complex than is the
case in standard surveys (Kerr, Ardington and Burger 2020). In particular it
is impossible to separate out a fixed sampling probability from the nonresponse
correction (see section A.4).

4.1 Assuming uniform non-response within NIDS-CRAM
strata

Nevertheless, we show in section A.4.1 that it is possible to define a set of weights
on the sampling frame that will produce unbiased results, provided that the proba-
bility of response is constant within NIDS-CRAM strata. It leads to a very simple
“sharing rule” within households:

s∗ih(t) ∝
nt

Nt − nt
(2)

Here individual i in household h is of type t (i.e. this is the NIDS-CRAM stratum
t); nt is the number of NIDS-CRAM sample members of type t and Nt is the
number of people on the original frame of type t.
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4.2 Dealing with non-uniform non-response

The assumption of a constant probability of non-response within NIDS-CRAM
strata turns out to be empirically dubious. Consequently the NIDS-CRAM sam-
pling team made an additional non-response adjustment, estimating a probit model
for response on the final sample (Kerr et al. 2020). We present a discussion of this
procedure in section A.4.2. We use these weights in our empirical work, although
we cannot use them to calculate the household shares, since we do not have them
for every individual (including non-sampled ones) on the sampling frame.

Note that, as in all cases of inverse probability weighting, the NIDS-CRAM
procedure works if, and only if, the distribution of the variable of interest Xh

is the same among respondents as among non-respondents, conditional on the
explanatory variables x′ih, i.e. we need

X0
h, X

1
h ⊥⊥ Dr ih|x′ih (3)

where Dr ih is a dummy variable equal to one if individual ih responded and X0
h is

the outcome variable on Xh if Dr = 0 and X1
h the case among individuals where

Dr = 1. In the case of NIDS-CRAM the propensity scores were estimated on a
mix of individual and household level variables.

As we do not observe the distribution of X0
h, we cannot check whether condi-

tion 3 holds. It is also likely to depend on the type of variable that is examined.3

In summary the weights that we use in the work below are a combination of the
within household “sharing rules” sih and the NIDS-CRAM official weights wNCpih .
Our preferred set of weights (and the ones released publicly) use the “optimal”
shares, i.e.

wNC hhih = wNCpih s∗ih (4)

5 How well do the “Household weights” per-

form?

The first key issue is the extent to which the household weights manage to repro-
duce various summary statistics of the NIDS wave 5 household distribution. A
first cut is provided by Table 2. It shows that all of the four sharing rules that
we consider produce estimates that are close to the ones that we produce with the
full NIDS wave 5 sample. By contrast if we had used the NIDS-CRAM person

3We could investigate this in the context of the 2017 household variables, since we do have
these available on the frame for responders and non-responders. The diagnostics that we show
in the next section show that at least for some of these 2017 variables, the combination of
household sharing rule and the NIDS-CRAM propensity score adjusted weights do a reasonable
job of recovering the original distribution.
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Figure 4: The household size distribution in 2017 using NIDS wave 5 and various
NIDS-CRAM wave 1 weights.

weights we would get seriously misleading estimates of average household size and
the proportion of single person households. The cost of double-counting is also
evident when we look at the estimates of the number of two person households.

In Figure 4 we show the impact of the different weights on estimates of the
distribution of household sizes in 2017. We already saw (in Table 2) that using the
NIDS-CRAM person weights would lead to a major underestimate of the propor-
tion of one person households. This Figure shows that we would concomitantly
markedly over-estimate the proportion of larger households. By contrast, using
any of the household sharing rules provides reasonable estimates.

Consulting Table 2 again, we observe that although there are no major differ-
ences between the different sharing rules, the estimated standard errors associated
with s∗ih, the sharing rule based on the odds of appearing in the sample, seem
to be smallest. Since our theory also favours this rule, this is the version of the
NIDS-CRAM “household weight” that is distributed.
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Table 2: Estimates of the 2017 distribution of households using NIDS wave 5 and
various NIDS-CRAM wave 1 weights

NIDS-CRAM household weights/sharing rule Person
NIDS Wave 5 Oldest1 Equal2 Odds3 Probability4 Weight5

Number of households
b 18 615 108 17 933 652 17 854 518 17 842 200 17 867 488
se 920 881 814 186 776 435 773 561 780 274
ll 16 806 146 16 336 249 16 331 182 16 324 501 16 336 619
ul 20 424 072 19 531 056 19 377 856 19 359 898 19 398 358

Number of two person households
b 3 114 728 3 010 418 2 931 563 2 939 283 2 925 858 5 094 640
se 209 532 227 306 188 023 185 776 191 588 338 846
ll 2 703 126 2 564 453 2 562 669 2 574 798 2 549 969 4 429 838
ul 3 526 330 3 456 384 3 300 457 3 303 768 3 301 747 5 759 443

Average household size
b 3.029 2.999 3.000 3.003 2.999 4.306
se 0.048 0.073 0.066 0.066 0.067 0.087
ll 2.935 2.856 2.870 2.873 2.867 4.137
ul 3.123 3.143 3.130 3.132 3.131 4.476

Proportion single person households
b 0.357 0.360 0.361 0.362 0.361 0.174
se 0.012 0.017 0.017 0.017 0.017 0.011
ll 0.335 0.326 0.329 0.329 0.328 0.153
ul 0.380 0.394 0.394 0.394 0.394 0.195

Notes:
1. Oldest member “represents” household
2. Equal shares among all members
3. Shares proportional to odds of appearing in sample, i.e. “optimal” shares s∗ih
4. Shares proportional to probability of being in sample
5. Using NIDS-CRAM person weights
b: point estimate, se: standard error, ll,ul: 95% C.I. bounds
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6 Applying the household weights to NIDS-CRAM

measures

The fact that our NIDS-CRAM household weights manage to reproduce the 2017
household distribution is reassuring. Of course we are interested mainly in applying
the weights to NIDS-CRAM variables. Our first cut at this analysis is shown in
Table 3. There are several interesting results:

• The average household size according to the NIDS-CRAM results is consid-
erably larger than the average household size in NIDS wave 5. A different
look at this problem is provided by Table 4 which suggests that respondents
in NIDS-CRAM did, indeed, report more residents in their households than
there should have been. There are several potential explanations for this.
Firstly, the NIDS-CRAM variable does not impose the stringent conditions
that listing in a household roster requires.

Secondly, it is possible that the NIDS-CRAM sampling process dispropor-
tionately picked up individuals whose households gained members rather
than individuals in households losing members.

Thirdly, it should be noted that if the members gained are “temporary sam-
ple members” in NIDS terminology, i.e. individuals who could have been
sampled in NIDS but were not, then these additional people should not
really be counted. In NIDS this is handled by “sharing out” the original
household weight among all the new household members, so that the total
population count does not go up. This is obviously not possible to do with
the information that we have in NIDS-CRAM.

Finally, it is possible that the lockdown itself may have persuaded people who
were previously living apart to move “back” to their households of origin.

• While all the weights suggest a bigger household size in NIDS-CRAM wave 1,
Table 3 shows that the problem is much more pronounced with the double-
counting characterising the NIDS-CRAM person weights. Conversely, the
household weights also provide more reasonable estimates of the proportion
of single person households.

• Remarkably, however, the “hunger” and “no money” means are not really
different whether one uses the person weights or the household ones. It
suggests that the prevalence of hunger is only weakly related to household
size, so that the extra attention paid to large households when the person
weights are used does not distort the overall picture.
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Table 3: Household variables in NIDS-CRAM wave 1 calculated with different
weights.

Person Household weight/sharing rule
Weight Oldest Equal Probability Odds
NIDS CRAM Average household size

b 4.976 4.364 4.309 4.308 4.308
se 0.078 0.083 0.068 0.070 0.067
ll 4.824 4.201 4.175 4.171 4.177
ul 5.128 4.528 4.443 4.445 4.440

Proportion single person households
b 0.083 0.139 0.140 0.139 0.140
se 0.007 0.012 0.011 0.011 0.011
ll 0.070 0.116 0.118 0.118 0.118
ul 0.096 0.162 0.162 0.161 0.162

Hunger in household1

b 0.223 0.222 0.219 0.217 0.221
se 0.008 0.011 0.010 0.010 0.010
ll 0.206 0.201 0.199 0.197 0.201
ul 0.239 0.244 0.238 0.237 0.240

No money for food2

b 0.470 0.465 0.459 0.455 0.464
se 0.011 0.016 0.014 0.014 0.014
ll 0.448 0.434 0.432 0.429 0.437
ul 0.491 0.496 0.485 0.482 0.491

Notes:
1. In last 7 days, has anyone in your HH gone hungry due to lack
of food? (proportion answering yes)
2. In the month of April, did your household run out of money to
buy food? (proportion answering yes)
b: point estimate, se: standard error, ll,ul: 95% C.I. bounds
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Table 4: Estimates of the total population in NIDS-CRAM1

Age2 MYPE3 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5
All 58 667 434 76 236 976 74 897 936 74 794 272 72 906 432 71 581 520
0-6 8 029 831 10 119 548 10 255 757 12 064 054 11 223 592 11 069 304
7-17 10 930 956 8 386 181 8 800 817 15 988 256 15 294 999 14 843 844
18-60 34 639 421 38 546 772 30 916 134 40 932 388 39 868 828 39 617 384
> 60 5 067 227 7 977 114 6 383 144 6 129 779 6 510 891 6 050 929
Notes:
The totals in the age categories need not add up to the overall total; they are
derived from different questions.
1. Using household weights with shares proportional to the odds of being in
the sample.
2. Age categories changed in different waves of NIDS-CRAM:
Wave 1: All, over 60, under 7, under 18. Wave 2: All, over 60, under 7,
under 18, 18-60. Waves 3-5: All, under 7, 7-17, 18-60, over 60.
3. 2020 Mid-Year population estimates from Statistics South Africa

These findings are provocative and require further investigation. Indeed one
of the payoffs of having a framework for thinking about households is that new
avenues of enquiry become possible.

While the NIDS-CRAM person weights do not distort the proportions of house-
holds affected by hunger, they will obviously distort attempts to arrive at sensible
counts of people affected by hunger. And policy makers are often interested in
getting estimates of these quantities – even if they are rough.

Table 5 presents a first cut at these questions. Panels A and B of that table
present estimates of the total number of households affected by hunger in general
or child-hunger more specifically. This is likely a lower bound on hunger, since
it would also be the point estimate if there was only one person (or child) in the
household experiencing hunger. Panels C and D present estimates of the upper
bound of hunger, since these estimates assume that every member of the affected
household experiences hunger. Given that the NIDS-CRAM population estimates
are too high, as shown in Table 4, and that the likely cause of this is our inability
to correct for new “temporary sample members,” we rescaled the estimates to
align the NIDS-CRAM population totals with those of the Mid-Year Population
Estimates.

The numbers suggest that hunger affected between 2.7 million and 10.6 mil-
lion people at the time of the NIDS-CRAM fieldwork in April 2021. Somewhere
between 1.5 million and 3.1 million children were affected. Table 5 also suggests
that the overall levels of hunger have come down somewhat since the beginning of
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lockdown in March 2020, although perhaps not as much as one might have hoped.4

7 Measurement error

Of course our discussion thus far has assumed that all measures of the household
variable that we are interested in are equal. That is true by definition when we use
any of the 2017 household distribution measures as we did in Figure 4 or Table 2.
Once we turn to NIDS-CRAM variables, however, as we did in Tables 3 and 5 this
is no longer the case.

Indeed, there are some differences in the answers given by respondents from the
same 2017 NIDS household, as is shown in Table 6. Panel A of the table breaks
down how the question on hunger in the household was answered. The columns
labelled “Overall” show that about a quarter of the 7016 respondents indicated
that someone in their household had gone hungry in the last week. The columns
labelled “Between” indicate that hunger was recorded in 1 605 of the 4 903 NIDS
wave 5 households, and in 3 872 of the households, a respondent denied that there
had been hunger. Some households were obviously put into both categories, i.e.
different respondents from the “same” household reported divergent results. The
last column (“Within”) quantifies the mismatch. It shows that there was only 81%
agreement among respondents from households that seem to have been affected
by hunger. By contrast, there was much more agreement (93%) in “households”
where no hunger was reported.

Panel B shows that there was also at least some disagreement among respon-
dents from the same NIDS wave 5 household whether the household had run out
of money to buy food.

There are several reasons why such mismatches might occur. Firstly, it is not
evident that every household member is equally well informed about the experi-
ences of other household members or, indeed, whether the household ran out of
money. Secondly it is possible that at the time of the NIDS-CRAM survey re-
spondents from the same NIDS wave 5 households might have been in different
locations and reporting on different households. There is at present no way to
separate out measurement error from real changes in the household.

In the presence of measurement error it is no longer self-evident that the optimal
estimator defined in equation 1 will still be optimal. In the appendix we suggest
that it might be more robust to pick shares within the household proportional to
the probability of selection:

sih ∝ πih (5)

4The numbers for wave 2 look uniformly on the low side. This requires further analysis.
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Table 5: Estimates of the prevalence of hunger

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5
A. Hunger in household1

b 3 389 325 2 268 539 3 254 408 2 785 905 2 755 242
se 235 671 180 851 246 199 224 860 237 345
ll 2 926 279 1 913 181 2 770 664 2 344 074 2 288 881
ul 3 852 372 2 623 896 3 738 153 3 227 736 3 221 603

B. Hungry child in household2

b 1 787 811 1 319 222 1 747 312 1 493 791 1 536 921
se 144 075 120 557 158 406 147 452 158 730
ll 1 504 733 1 082 337 1 436 067 1 204 059 1 225 031
ul 2 070 889 1 556 108 2 058 556 1 783 522 1 848 810

C. People in household affected by hunger3

b 13 453 487 9 564 752 12 202 783 11 180 678 10 570 047
se 963 891 837 901 1 042 865 1 103 910 1 091 721
ll 11 559 637 7 918 344 10 153 713 9 011 584 8 424 916
ul 15 347 337 11 211 159 14 251 854 13 349 772 12 715 179

D. Children in household affected by hunger4

b 3 421 147 2 697 636 3 499 001 3 148 362 3 137 427
se 304 247 274 671 350 747 378 330 403 564
ll 2 823 364 2 157 930 2 809 836 2 404 973 2 344 461
ul 4 018 930 3 237 342 4 188 166 3 891 750 3 930 393

Notes:
Household weights with shares proportional to the odds of being in
the sample were used.
1. Count of households with a “yes” answer to “In the last 7 days
has anyone in your household gone hungry because there wasn’t
enough food?”
2. Count of households with a “yes” answer to “In the past 7 days,
has any child in your household gone hungry because there wasn’t
enough food?”
3. Count of household members in the households affected by
hunger. The overall count scaled down to bring the NIDS-CRAM
population in line with the MYPE as shown in Table 4.
4. Count of children in households affected by child hunger. The
overall count scaled down to bring the NIDS-CRAM under-18 pop-
ulation in line with the MYPE as shown in Table 4.
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Table 6: Reporting differences on hunger by respondents from the same NIDS
wave 5 household

Overall Between Within
Freq. Percent Freq. Percent Percent

A. Hungry1

0 5160 73.55 3872 78.97 92.99
1 1856 26.45 1605 32.74 81.14
Total 7016 100 54772 111.71 89.52
B. No money3

0 3392 48.33 2766 56.29 86.3
1 3626 51.67 2897 58.95 87.23
Total 7018 100 56634 115.24 86.77
Notes:
1. In last 7 days, has anyone in your HH gone hungry due to
lack of food?
2. Distinct number of NIDS wave 5 households=4903
3. Did your household run out of money to buy food?
4. Distinct number of NIDS wave 5 households=4914

This accounts for the fourth “sharing rule” that we used in Figure 4 and Tables 2
and 3. In practice it seems to perform very similarly to our preferred sharing rule.

8 Changes in households

As suggested above, the biggest problem in the case of NIDS-CRAM, however, is
the fact that household composition will have changed between 2017 and the time
of the surveys. In order to think through the impact of such changes, the following
issues would need to be dealt with:

1. The distribution of individuals across households would have changed, i.e.
households could have split (or joined up) since 2017

2. Other individuals (“temporary sample members” in NIDS terminology) could
have become co-resident with NIDS sample members. We have already noted
that this is a possilbe culprit for the large average household size in NIDS-
CRAM.

In the absence of other evidence one would need to model this. We sketch out
an approach for how to deal with these issues in section A.6. For the moment
these are beyond the scope of this paper.
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9 Conclusion

The main purpose of this document has been to lay out a framework for thinking
about households in the NIDS-CRAM sample. Our results suggest that the house-
hold weights that we constructed do permit interesting analyses. Nevertheless they
should also be used with caution. While the weights reduce the problem of double-
counting, they cannot provide proper estimates for the population of households
in 2020 or 2021. To some extent they provide estimates for 2017 households but
we know that “normal” social and economic processes will have reshaped the dis-
tribution since then. More to the point, the “abnormal” processes of the COVID
pandemic and lockdowns will have had massive impacts on co-residency arrange-
ments. The weights that we have discussed here will not help in capturing those
except, perhaps, indirectly.

A Technical discussion

We follow the general procedure in Horvitz and Thompson (1952), i.e. we assume
that the population information is fixed and only the sampling is stochastic. Let
the total on variable X measured on the population of households be Tpop, i.e.

Tpop =
H∑
h=1

xh (6)

where xh is the outcome of X on household h. Assume that the household level
variable xh is attached to every individual in that household so that

x1h = x2h = · · · = xkh = xh

where we assume that there are individuals 1, 2, . . . , k in household h.

A.1 The household representative estimator

For our first estimator we will pick one individual per household. Without loss of
generality we assume that this is the first listed individual on the frame, i.e. let
variable D1 be defined so that it is equal to one for the first observation in every
household on the frame and zero otherwise, i.e.

D1ih = 1 (i = 1)

where 1 () is the indicator function.
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Now define aih as the indicator variable indicating whether individual i in
household h is sampled. Let πih be the probability of selection, given the fixed
sampling design and wih = 1

πih
be the corresponding Horvitz-Thompson weights.

Our sample estimator of the population total is

T̂ reppop =
∑
aih=1

wihD1ihxih (7)

We rewrite this as a sum over the entire population

T̂ reppop =
H∑
h=1

k∑
i=1

wihaihD1ihxih

=
H∑
h=1

w1ha1hxh

In the last line we have used the fact that D1 is zero except for the first individual
per household on the frame and the measure xih is equal to xh for all i.

Taking expectations

E
(
T̂ reppop

)
=

H∑
h=1

w1hE (a1h)xh

=
H∑
h=1

w1hπihxh

=
H∑
h=1

xh

It is therefore evident that the estimator given in equation 7 is unbiased.

A.2 The household sharing estimator

Define the share sih for individual i in household h such that

1. sih ∈ [0, 1] for all individuals i in household h

2.
∑k

i=1 sih = 1

The “household sharing” estimator of Tpop can be defined as:

T̂ spop =
∑
aih=1

wihsihxih (8)
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Again we write this as a sum over the population:

T̂ spop =
H∑
h=1

k∑
i=1

wihaihsihxih

=
H∑
h=1

k∑
i=1

wihaihsihxh (9)

where we have used the fact that xih = xh for all i.
Taking expectations

E
(
T̂ spop

)
=

H∑
h=1

k∑
i=1

wihE (aih) sihxh

=
H∑
h=1

k∑
i=1

wihπihsihxh

=
H∑
h=1

k∑
i=1

sihxh

=
H∑
h=1

xh

Note that this derivation presumes that sih is non-stochastic, i.e. fixed before
sampling.

Observe also that the “household representative” estimator T̂ reppop is just a special
case of the “household sharing” one, with s1h = 1 and sjh = 0 if j 6= 1.

A.3 Variance with different sharing rules

Since any sharing rule among individuals on the frame belonging to the same
household will yield an unbiased estimator, it makes sense to pick a sharing rule
that will reduce the variance.

Using the “population” version of the equation for T̂ spop as given in equation 8,
it is clear that its variance will depend inter alia on the variances and covariances
of the aih selection terms. In the case of NIDS-CRAM individuals were sampled
from strata defined by individual level characteristics (in particular age, gender and
“race”) and sampling was done by simple random sampling without replacement.
The latter implies that individuals from different strata (even if they lived in the
same household) would have been sampled essentially independently of each other.
Within the same stratum the selection process is obviously not independent, since
sampling happened without replacement. Nevertheless to the extent that the
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strata on the frame are big relative to sample, the probability of individuals ih
and jm being jointly included, i.e. E (aihajm) will be approximately the product
of the individual inclusion probabilities, i.e. cov (aih, ajm) ≈ 0.5

Consequently

V
(
T̂ spop

)
≈

H∑
h=1

k∑
i=1

w2
ihV (aih) s

2
ihx

2
h

=
H∑
h=1

k∑
i=1

w2
ihπih (1− πih) s2ihx2h

=
H∑
h=1

k∑
i=1

(wih − 1) s2ihx
2
h

Without loss of generality, we will consider how to minimise this by picking
a sharing rule within household h, i.e. we want to choose s1h, s2h, skh so as to

minimise V
(
T̂ spop

)
subject to the constraint that

∑
sih = 1.

The Lagrangian for this problem is

L =
k∑
i=1

(wih − 1) s2ihx
2
h − λ

(∑
sih − 1

)
With first order conditions

∂L

∂sih
= 2sih (wih − 1)x2h − λ = 0 (10a)∑

sih = 1 (10b)

From the first set of conditions (equations 10a) we get

sih (wih − 1) = c

sih =
c

wih − 1

= c
πih

1− πih
5Unfortunately, the information in Table 1 refutes this claim for most strata. Accounting for

correlation within strata really complicates the analysis. A simple across-the-board rule like the
one we derive below will not work. Of course to the extent to which households are composed of
individuals from different strata, the analysis still works. In section A.4.1 we adapt the procedure
to account for nonresponse. The realised sample from each stratum is, indeed, small relative to
the frame, so if nonresponse is independent within households, this approximation is much more
reasonable when considering the final sample.
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where c is a constant. The (approximately) variance minimising rule is therefore
to pick the share sih inversely proportional to wih−1 or, equivalently, proportional
to the odds of selection, which is given as equation 1 in the main text, i.e.

sih ∝
πih

1− πih

Intuitively, the closer pih is to one, the more we gain by putting all our attention
on xih – that observation will appear in almost every sample and it will have a low
weight, so the between-sample variability will be reduced.

A.4 NIDS-CRAM sampling

One immediate complication is that NIDS-CRAM sampling did not fix the prob-
ability of selection ex ante. This means that there are no fixed “design weights”
for the procedure outlined in the previous sections.

A.4.1 Sampling with top-up

Instead, the NIDS-CRAM procedure was to divide the individual frame up into
separate “strata” (types of individuals) and to make repeated attempts to augment
the original sample in order to achieve a targeted sample size within any particular
stratum. In order to think about the implication of this for a weighting strategy,
it is useful to trace through what happens in a very simple example, outlined in
Figure 5. Here we have assumed a population (stratum) of size three (consisting
of unit A,B and C) and a targeted sample of size two, subject to supplemental
sampling if there is nonresponse at the first stage. We assume that the probability
of nonresponse is a constant φ in this population (stratum) and that sampling is
by simple random sampling. There are three possible samples at the outset, but
twelve possible outcomes of realised samples once fieldwork has happened (non-
responding units are shown by a blank box).

In most cases, except those where both sampled units respond, the sample is
topped up. Since there is only one way of topping up this doesn’t change the
probabilities of the sample at that stage. The final realised sample, of course also
depends on the nature of non-response on the top-up. Once fieldwork has been
completed, there are altogether twenty-one possible outcomes, although there are
only seven possible samples: {A,B} , {A,C} , {B,C} , {A} , {B} , {C} ,∅

Looking across all possible samples, we see that each of them (e.g. the sample
{A,B}) can be reached in three ways. The inclusion possibility for any particular
element will be the sum of the probabilities of all the samples in which it can
appear. Calculating conventional design weights is therefore possible (conditioning
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Figure 5: A schema for sampling with refreshment and nonresponse

on getting a sample other than the empty set), but this is not actually the most
sensible way to progress.

The most sensible way of analysing the data is to condition on the sam-
ple size that was actually achieved. It then remains to observe that the sit-
uation is perfectly symmetrical, so there are exactly as many ways of getting
the sample {A,B} as there are of getting {A,C} or {B,C}. This means that
Pr ({A,B} |n = 2) = Pr ({A,C} |n = 2) = Pr ({B,C} |n = 2) = 1

3
. This means

that the inclusion probabilities of every unit, conditioning on the realised sample
size, will all be equal, i.e. Pr (A|n = 2) = 2

3
, while Pr (A|n = 1) = 1

3
.

The weights correcting for design and non-response and conditioning on re-
alised sample size, are therefore just N

n
. It is easy to verify that these weights will

give unbiased estimates of totals estimated from the population (using the usual
Horvitz-Thompson arguments).

Note that because we know which stratum each of the individuals on the sam-
pling frame belong to, we can calculate ex post what these weights should be for
every member of the frame, i.e. for individual i in household h of type t

wnrih(t) =
Nt

nt
(11)

where Nt is the size of the stratum in the population and nt the size of the realised
sample.

Instead of the design weights we can use these design-and-non-response ad-
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justed weights wnrih(t) to calculate the household sharing rules (e.g. equation 1).6

Denote these as s∗ih, we get equation 11 in the main text, i.e.

s∗ih(t) ∝
nt

Nt − nt

To get an optimal unbiased estimator of any population statistic, we however
require additional conditions. Firstly, we need to assume that the probability
of responding is independent of the household outcome measure xh. This will
be the case if the response probability is constant within individual strata (as was
assumed in the argument above). Secondly, we need to assume that the probability
of response is independent within households. If it is not, then we cannot derive
an optimal sharing rule without knowing more about the response mechanism.
Both of these assumptions are questionable given the empirical evidence that we
produce.

A.4.2 Non-constant non-response within strata

In practice it transpires that assuming a constant non-response probability within
strata does not provide plausible estimates of population statistics from the realised
sample. Consequently, the NIDS-CRAM team made an additional adjustment for
individually differing probabilities of response (Kerr et al. 2020).

To understand the logic, we can rewrite equation 11 as

wnrih(t) =
Nt

nst

nst
nt

where nst is the number of individuals from stratum t that were sampled, and Nt

and nt are the stratum size and size of realised sample, as before. The quantity
nst
Nt

is the sampling fraction of stratum t.
Using the full sample (i.e. including the non-responders) the NIDS-CRAM

sampling team estimated a probit model for response using “the individual’s race,
gender, language, log of household per capita income in wave 5, an urban dummy,
the individual’s province, their wave 5 employment status, wave 5 household size
and whether or not an individual was successfully interviewed in wave 5” (Kerr
et al. 2020, p.2). We can write the estimated probability as

p̂ih(t) = F

(
z′ihβ̂ + z′hγ̂ +

T∑
stratum=j

αj Dih(j)

)
6Implicit in this procedure is the assumption that the nonresponse process is random within

households, conditioning on the strata of its members. Given that sampled individuals were
telephoned directly this is not a wild assumption.
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where F is the cumulative normal distribution, z′ih is a vector of individual char-
acteristics, z′h a vector of household characteristics and Dih(j) the set of stratum
dummy variables.

The NIDS-CRAM non-response adjusted weights then become

wNCsih(t) =
Nt

nst

1

p̂ih(t)
(12)

Note that this reduces to the case in equation 11 if the vectors β̂ and γ̂ are both
zero, since then p̂ih(t) is just nt

nst
. Empirically this is decisively not the case (personal

communication, Cally Ardington).
One could interpret nst p̂ih(t) as the expected number of individuals of type t

in the realised sample, assuming that the response mechanism is described by the
probit model.7

We cannot implement the optimal sharing rule (equation 1) using the NIDS-
CRAM released weights, since we do not have these for individuals on the frame
other than those that ended up in the realised sample. Furthermore the weights
went through an additional process of trimming.

But, as noted in section A.2, any sharing rule sih produces a consistent pop-
ulation estimate, provided that the weight wih corrects properly for the sampling
design and (in this case) non-response.

In our empirical work we therefore combine the NIDS-CRAM weights wNCsih

with shares given by equation 2. The estimator for a population household quantity
can therefore be written as

T̂ spop =
∑
aih=1

wNCsih s∗ihxih

Using the sharing rule s∗ih rather than some other plausible ones (e.g. equal shares)
will be better to the extent to which the “stratum response probability” nt

nst
is at

least a partial indicator of the individual response probability p̂ih. Let the ratio of
the NIDS-CRAM weights and the weights defined in equation 11 be radjih(t), i.e.

radjih(t) =
wNCsih

wnrih(t)

=
nt

p̂ih(t) n
s
t

7In the example of Figure 5 this procedure gives the right estimates – although the probit does
not actually estimate the response propensity consistently. The underlying problem is that the
size of the sample within a stratum, i.e. nst , is itself a function of nonresponse and so depends on
the response probability. Estimating the probability on an endogenous sample creates problems.
A preferable procedure would be to estimate the probability of being sampled and responding
over the entire stratum. In practice this is unlikely to make much difference.
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Then we can rewrite the estimator of the population total as

T̂ spop =
∑
aih=1

radjih(t)w
nr
ih(t)s

∗
ihxih

If radjih is equal to one, then this is equivalent to doing the calculation only with the
stratum weights, and the sharing rule will then be variance minimising. The further
radjih is from one, the further the shares s∗ih are likely to be from optimality. In our
empirical work we provide estimates with different sharing rules. The estimated
standard errors are an indicator of the the relative efficiencies of differing sharing
rules. It turns out that the “optimal shares” s∗ih seem to perform best.

A.4.3 Adjusting to the 2017 population

In practice there is an additional adjustment. The NIDS-CRAM weights are not
designed to provide estimates for the NIDS wave 5 sample, but for the population
that is covered by that sample (roughly the adult South African population of
2017). The process of generating estimates for the 2017 population is straightfor-
ward.

By assumption an unbiased estimator of a population total X2017
h using the

NIDS household measures xh is given by

X̂2017
h =

nnids∑
h=1

w5 wgthxh

=

nnids∑
h=1

zh

where w5 wgth is the NIDS wave 5 household weight for household h – which also
happens to be the person weight – and we let zh = w5 wgthxh.

By the argument of the previous section

X̂2017
pop =

∑
aih=1

wNCsih s∗ihzih

=
∑
aih=1

wNCsih s∗ihw5 wgtihxih

will give an unbiased estimate of
∑nnids

h=1 zh which, of course, is our unbiased esti-

mate of X̂2017
h . It is evident that the weights required to provide estimates for the

2017 population of households are

wNC hhih = wNCsih s∗ihw5 wgtih (13)
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Note that the person weights released with NIDS-CRAM already incorporate
the weighting adjustment to produce estimates for the 2017 population, i.e. the
NIDS-CRAM weights are

wNCpih = wNCsih w5 wgtih

So the household weights given by equation 13 can also be written in the form
given in equation 4 in the main text.

A.5 Measurement error

Up to this point we have assumed that every individual within household h provides
the same information, viz. xh. Let us now consider the case where individuals
report the household measure with error, i.e.

xih = xh + ηih (14)

The “household share” estimator defined in equation 8 can now be written as

T̂ spop =
∑
aih=1

wihsih (xh + ηih)

It is evident that even in expectation this is not guaranteed to give us the true
population total. Rewriting the estimator again as a sum over the population (as
in equation 9) but focusing only on the contribution of individuals in household h
we see that

E

[
k∑
i=1

wihaihsih (xh + ηih)

]
=

k∑
i=1

wihE (aih) sih (xh + ηih)

=
k∑
i=1

wihπihsih (xh + ηih)

= xh +
k∑
i=1

sihηih (15)

This says that, in expectation, the contribution from individuals in household h
would give us the true value plus a weighted average of the measurement errors,
with weights sih. Note that in the Horvitz-Thompson framework we treat xih as
fixed, so that we have treated the measurement error ηih likewise as fixed when we
took expectations.

It is worth noting that equation 15 implies that different choices of the “sharing
rule” change the population parameter that is estimated. For household h, the
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outcomes will range between min{x1h, x2h, . . . , xkh} and max{x1h, x2h, . . . , xkh}.
Likewise, the estimate T̂ spop can range between the case where the sum is con-
structed from the set of minima in each household and the sum of the maxima.
Note that this range is not due to sampling noise, but due to measurement error.

Without further knowledge of the error process it is hard to say more about
how the “sharing rule” sih will impact. It seems clear, however, that it is unlikely
that picking only one representative per household will deal well with the errors.

To get a little traction, let us assume that the errors ηih are drawn indepen-
dently of each other from the same distribution with zero mean and variance σ2

η;
and that they are also independent of the sampling process aih. It then follows
that cov (xih, xjm) = 0 if i 6= j and that cov (xih, ajm) = 0.

Furthermore we can show that if the random variables X and Y are indepen-
dent, then

V (XY ) = V (X)V (Y ) + V (X)µ2
Y + V (Y )µ2

X

where µX = E (X) and µY = E (Y ).
Applying this result to the formula for T̂ spop as given in equation 9, and assuming

(as before) that the sampling design for NIDS-CRAM is such that aih and ajm are
approximately independent, then

V
(
T̂ spop

)
≈

H∑
h=1

k∑
i=1

w2
ihV (aihxih) s

2
ih

=
H∑
h=1

k∑
i=1

w2
ih{V (aih)V (xih) + V (aih)x

2
h + E (aih)

2V (xih)}s2ih

=
H∑
h=1

k∑
i=1

w2
ih{πih (1− πih)σ2

η + πih (1− πih)x2h + π2
ihσ

2
η}s2ih

=
H∑
h=1

k∑
i=1

{(wih − 1)
(
σ2
η + x2h

)
+ σ2

η}s2ih

If we again focus on choosing sih to minimise the variance we get the Lagrangian

L =
k∑
i=1

{(wih − 1)
(
σ2
η + x2h

)
+ σ2

η}s2ih − λ
(∑

sih − 1
)

With first order conditions

∂L

∂sih
= 2sih

(
wih
[
x2h + σ2

η

]
− x2h

)
− λ = 0 (16a)∑
sih = 1 (16b)
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Substituting in wih = 1
πih

into equation 16a we get

sih =
πih

1− πih + πihRh

λ

x2h + σ2
η

where Rh =
σ2
η

x2h+σ
2
η
. Note that Rh is common within household h although different

across different households. Within household h we would therefore like to allocate
shares according to the rule

sih ∝
πih

1− πih + πihRh

This is however not a formula that can be implemented since it depends on the
unknowns σ2

η and xh.
8 But observe that if πjh ≤ πih then

πih
πjh
≤ πih/ (1− πih + πihRh)

πjh/ (1− πjh + πjhRh)
=
sih
sjh
≤ πih/ (1− πih)
πjh/ (1− πjh)

So in this case the optimal sharing rule is bounded between the rule expressed by
equation 1 and a rule which allocates shares proportionally to the probability of
selection, i.e.

sih ∝ πih

which is equation 5 in the main text. Intuitively, the formula given by equa-
tion 1 pays far too much attention to observations with πih close to one, and this
“blows up” any measurement error associated with those cases. The rule given in
equation 5 is not so sensitive.

Given the presence of non-response we will, in our applied work consider the
rule which fixes shares in proportion to the probability of being sampled and
responding, estimated, for instance (see equation 11) as

s∗∗ih ∝
nt
Nt

(17)

A.6 Changes in households

In this section we analyse how changes in the household distribution will affect
our estimation strategy. To crystallise the issues, let us adapt the notation that
we have used thus far. We assume that the individual identifier i is unique to
individuals across waves (akin to the NIDS pid identifier) and that individual i is

8One could estimate σ2
η as the “within” household variance from a fixed effects estimator and,

in big households, estimate xh as the mean of xih. This is unlikely to be accurate or worth the
effort.
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in household h at the time of NIDS wave 5, but in household h′ at the time of
NIDS-CRAM. The generic estimator of a household total is

T̂ s 2020pop =
∑
ai=1

wNC2020
ih′ sih′xih′

=
∑
ai=1

wNCsih′ pwih′ sih′ xih′ (18)

In the last line we have split the household weight wNC2020
ih′ into a weight designed

to get the NIDS-CRAM sample back to the NIDS frame from which it was drawn
(wNCsih′ ) and the correction to get from that frame to the 2020 population (pwih′),
as in equation 4.

To implement this, we need to know:

• which household h′ the individual resides in, and

• how to raise the NIDS wave 5 sample to the 2020 population, i.e. which
household weights pwih′ to apply.

We discuss these issues in turn.

A.6.1 Households breaking apart

The break-up of existing households will potentially reallocate individuals to house-
holds. The first implication of this is that the shares sih′ now need to be calculated
over individuals on the frame that are in the same 2020 household h′. If, for ex-
ample, there were five individuals on the frame from household h in NIDS wave 5
with measures x1h, x2h, x3h, x4h and x5h and this household splits into two house-
holds h′ = {1, 2} and h′′ = {3, 4, 5}, then an equal sharing rule would produce
shares s1h′ = s2h′ = 1

2
and s3h′′ = s4h′′ = s5h′′ = 1

3
in formula 18, i.e. 1

2
x1h′ + 1

2
x2h′

would be the expected contribution of new NIDS-CRAM household h′ to the 2021
population total and 1

3
x3h′′ + 1

3
x4h′′ + 1

3
x5h′′ would be that of new household h′′.

There are two key questions:

• How do wave 5 households break apart?

• Do any wave 5 households “join up”?

The probability of the latter event is so rare, that we exclude it from consideration.
To answer the first question we need to work out whether any of the individuals
seem to have left their original household. Some of the variables in NIDS-CRAM
(about whether they are still in their original dwelling) could be used here.
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A.6.2 Are there any new co-residents?

Besides working out how NIDS wave 5 individuals may have changed their resi-
dential arrangements, we also need to consider whether any new individuals have
joined. New births to CSM mothers will not affect our calculations in any material
way, so we consider only the impact of “temporary sample members” (TSMs).

The NIDS rules for updating weights between waves, is that the weights of
“continuing sample members” (CSMs) within a household are added up and then
“shared out” between all members of that new household. If, for instance, there
are kc CSMs in the NIDS-CRAM household (all from household h in wave 5) and
now co-resident with kt TSMs, then the weight for the 2020 household h′ (and all
the individuals within them) will be given by:

pwih′ =
kc

kc + kt
w5 wgtih (19)

The term w5 wgtih is the original, unadjusted wave 5 weight for individual i in
household h, i.e. the weight designed to give estimates for the 2017 population of
individuals or households. Note that the counts kc and kt include children CSMs
and TSMs.9

Because of the multiple ways in which additional household members could
arrive, the most straigthtforward way to get a point estimate would be to substitute
the expected contribution to the total from individual i, i.e.

E (pwih′sih′xih′) = E
(

kc
kc + kt

)
w5 wgtih sih′ xih′ (20)

We can get estimates about the transition probabilities facing individual i in house-
hold type T in terms of the new co-residency relationships. Using the history of
previous transitions of course assumes that the changes between 2017 and 2021
have been “normal.” It is probable that they were not. In principle one could
simulate alternative outcomes and check their impacts on the types of household
statistics that are calculated.
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